Electrons in a microwave cavity:

charging towards high densities, anti-crossing phenomena

Andreas Würl Jürgen Klier Valeri Shikin Paul Leiderer

Overview

- Introduction to the system "electrons on helium"
 - Basic principles
 - Determining the electron density
- Experiment: Charging thin helium films with electrons
 - Experimental setup and methods
 - Results on lower electron densities
 - High electron densities and problems with reproducibility
- Anti-crossing phenomena in cyclotron resonance
 - General introduction
 - Looking at cyclotron resonance data
- Conclusions & Outlook

Characteristics of e⁻ on thin helium-films

- film is stabilized through van-der-Waals forces
 → higher electron densities can be reached
- interaction between electrons gets dipole character
 → modification of the phase diagram
- stronger image-charge in the polarizable substrate
 → binding of electrons gets stronger
- surface roughness becomes important
 → has to be considered in the analysis

The phase-diagram of the 2DES

important energies:

thermal energy $\propto T$ Coulomb energy $\propto \sqrt{n}$ Fermi energy $\propto n$

F. Peeters, numerical calculation PRL **50**, 2021(1983):

→
$$T_c(\infty) = 33 \text{ K}$$

 $n_c(\infty) = 2.4 \times 10^{16} \text{ m}^{-2}$

experimental path

Determining the electron density

saturation of the 2DES: electrical field above it vanishes

$$n_{s} = \frac{Q}{eA} = \frac{U_{\text{clamp}}\varepsilon_{0}}{e} \frac{1}{\frac{d_{\text{vacuum}}}{1} + \frac{d_{\text{He-film}}}{\varepsilon_{r,\text{He-film}}} + \frac{d_{\text{insulator}}}{\varepsilon_{r,\text{ insulator}}}}$$

helium film thickness depends on the electron pressure:

$$d = d_0 \left(1 + \frac{n_s^2 e^2}{2\varepsilon_0 \rho g h} \right)^{-\frac{1}{3}}$$

Etz et. al., PRL 53, 2567 (1984)

Determining the electron density

Results of the self-consistent calculations

Electrons on He on 200 nm PMMA ($\epsilon = 1.7$)

Electrons on He on 200 nm SiO₂

 $(\varepsilon = 5)$

RTN midterm meeting, Paris, 19.12.2002, page 6

The experimental setup

microwave resonator:

- working frequency $\approx 10 \text{ GHz}$
- microwave transmission is measured around the cavity's resonance
- parameters are extracted via a curve-fit

RTN midterm meeting, Paris, 19.12.2002, page 7

How the experiment works

transmitted power

The presence of a 2DES on the substrate leads to a **damping of the resonators transmission** and a **shift of the resonance frequency**.

The physical parameters of the 2DES can be extracted from this information.

Comparison between the formerly used setup and the new network analyzer method.

 \rightarrow The noise level is compareable.

Charging the helium film on PMMA

Charging the helium film on SiO₂

Data analysis

RTN midterm meeting, Paris, 19.12.2002, page 11

Changing the excitation power

two excitation power sweeps in the liquid and crystalline phase

charging simultaneously with two different excitation powers

Charging the helium film to high e⁻ densities

problems which arise:

- sudden breakthrough of electrons
- tunneling at small film thicknesses
- increased absorption due to **localized electrons**
- no saturation because of competition beween loss and gain of electrons

to detect these phenomena, repeated charging sweeps were done

- breakthrough and tunneling of electrons shift the onset of charging to more positive voltages
- **localized electrons**, which lead to enhanced absorption cannot be removed after the charging process
 - → absorption does not go back to the initial value

Charging series on thin helium films

High electron densities

RTN midterm meeting, Paris, 19.12.2002, page 15

Anti-crossing phenomena in a resonator

If $B \to 0$ and $B \to \infty$, $\delta \omega_{\sigma}$ is a linear function of n_s

Dispersion law of resonator:

$$\tan(q_0 d) - \frac{\sin(k_0 d) + \cos(k_0 d) \cot(k_0 h)}{\cos(k_0 d) - \sin(k_0 d) \cot(k_0 h)} = \frac{4\pi i}{c} \sigma_{xx}$$

For small coupling ($\sigma_c \ll 1$):

$$\omega_e - \delta \omega_p = \omega_0 + \delta \omega_\sigma$$

Extracting the data

Analyzing the CR data

Conclusion

It is easily possible to charge thin helium films with electron densities up to the order of 10^{14} m⁻².

One can even reach higher densities, but has to be very careful with the measurement and the analysis, as a lot of problems can happen here.

Very smooth substrates are necessary for good S/N ratio.

The presented two-fraction model in combination with cyclotron resonance measurements provide a tool for surface characterization.

Outlook

- use new substrates, like "pure" silicon or carbon films
- try to explore the behaviour of the system in a wider parameter range
- further improve process of charging and discharging the system