Electrons on thin helium films

The two-fraction model and cyclotron resonance measurements

Andreas Würl Valeri Shikin^{*} Jürgen Klier Paul Leiderer

FB Physik, Universität Konstanz, Germany *ISSP Chernogolovka, Moscow, Russia

Motivation ...

Measurements of cyclotron resonance of a 2DES on thin helium films show a behaviour which can not be explained with the free electron model.

RTN — Surface electrons on mesoscopic structures

... Motivation

When one tries to fit the cyclotron resonance data with the free electron model, it is not possible to fit both sides of the curve simultaneously. Icalized electrons contribute

RTN — Surface electrons on mesoscopic structures

Modelling the adsorbed helium film ...

The **helium film thickness** d(x) can be deduced from:

$$\sigma_{lv} \frac{d''(x)}{[1+(d')^2]^{3/2}} - \rho g \delta(x) + \frac{C_3}{d^3(x)} = \rho g h$$

The **radius of curvature** of the capillary condensed film is then:

$$rac{2\sigma_{lv}}{R}\simeq
ho gh$$

RTN — Surface electrons on mesoscopic structures

... and the substrate roughness

roughness distribution: $G(\delta) = \frac{1}{\sqrt{2\pi \Lambda^2}} \exp \left| -\frac{\delta^2}{2\Delta^2} \right|$

lateral correlation length: $\langle \delta(x), \delta(x-x') \rangle = \Delta^2 \exp\left(-\frac{x'^2}{2n^2}\right)$

RTN — Surface electrons on mesoscopic structures

Modelling the CR absorption

The total absorption is then the sum of the absorption of localized and free electrons:

and $z = \omega^2 \tau^2$, $x = \omega_c^2 \tau^2$

Calculating the fractions

use only fractions of densities

$$v_e = \frac{n_e}{n_s}$$
 $v_l = \frac{n_l}{n_s}$ $v_e + v_l = 1$

the fractions are calculated with two points on the fit

RTN — Surface electrons on mesoscopic structures

Experimental setup

measuring frequency: around 9 GHz electron densities: $10^{12} - 10^{15} \text{ m}^{-2}$ magnetic field: 0 - 1 Thelium-film thickness: 10 - 100

How the experiment works

Experimental Results

Analyzing the data

qualitative behaviour: SiO₂ substrate is smoother **but:** offset to 100% n_e/n_s **dip** in both curves

difference due to temperature and different measurement frequencies

RTN — Surface electrons on mesoscopic structures

Conclusions & Outlook

two-fraction model explains the behaviour of a 2DES on thin helium films:

- origin of the CR-line asymmetry is understood
- quantitative analysis of the electron fractions is possible.
- model provides a method to characterize a substrate surface used in the measurements

experimental Outlook:

- explore wider range of film thicknesses
- resolve the vicinity of the dip more precisely

theoretical Outlook:

- refine theory for quantitative data analysis
- consider special properties of the cavity

